Benha University
Faculty Of Engineering at Shoubra

II ECE 122
Electrical Circuits (2)(2017/2018)

Dr. Moatax Hsherbini
motaz.ali@feng.bu.edu.eg

Reference Chapter 16

> Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/TheoryAndProblemsOfElectricCircuits

Second-Order RLC Transient (Step Response)

$>$ The Switch " S " is closed at $\mathrm{t}=0$
> Applying KVL will produce the following Integro-Differential equation:

$$
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t=V
$$

> Differentiating, we obtain

$$
L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{i}{C}=0 \quad \text { or } \quad\left(D^{2}+\frac{R}{L} D+\frac{1}{L C}\right) i=0
$$

This second order, linear differential equation is of the homogeneous type with a particular solution of zero.
\checkmark The complementary function can be one of three different types according to the roots of the auxiliary equation which depends upon the relative magnitudes of R, L and C.

$$
m^{2}+\frac{R}{L} m+\frac{1}{L C}=0
$$

Second-Order RLC Transient (Step Response)

We can Rewrite the auxiliary equation as:

$$
m^{2}+\frac{R}{L} m+\frac{1}{L C}=0
$$

$>$ The roots of the equation (or natural frequencies):

$$
\left\{\begin{array}{l}
m_{1}=-\frac{R}{2 L}+\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}} \\
m 2=-\frac{R}{2 L}-\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}
\end{array}\right.
$$

Second-Order RLC Transient (Step Response)

Case 1: Overdamped,

$$
\frac{\mathrm{R}}{2 \mathrm{~L}}>\frac{1}{\sqrt{L C}} \quad \Rightarrow m_{1}, m_{2} \text { are real and unequal }
$$

Natural response is the sum of two decaying exponentials:

$$
i_{t r}=K_{1} e^{m_{1} t}+K_{2} e^{m_{2} t}
$$

Case 2: Critically damped,

$$
\begin{gathered}
\frac{\mathrm{R}}{2 \mathrm{~L}}=\frac{1}{\sqrt{L C}} \Rightarrow m_{1}, m_{2} \text { are real and equal. } \\
m_{1}=m_{2}=-\omega_{0}
\end{gathered}
$$

$$
x_{c}(t)=e^{m_{1} t}\left(B_{1}+B_{2} t\right)
$$

Use the initial conditions to get the constants

Usually it is reduced to:

$$
x_{c}(t)=\text { B.t. } e^{m_{1} t}
$$

$$
5
$$

Second-Order RLC Transient (Step Response)

Case 3: Underdamped,

$$
\begin{aligned}
& \frac{\mathrm{R}}{2 \mathrm{~L}}<\frac{1}{\sqrt{L C}} \\
& \sigma^{2}<\omega_{o}^{2} \\
& \sigma=\frac{R}{2 L}
\end{aligned}
$$

$$
\sigma^{2}<\omega_{o}^{2} \quad \Rightarrow m_{1}, m_{2} \text { are complex and conjugate. }
$$

Natural response is an exponentially damped oscillatory response:

$$
i_{t r}=e^{-\sigma t}\left\{A_{1} \cos \left(\omega_{d} t\right)+A_{2} \sin \left(\omega_{d} t\right)\right\}
$$

\checkmark The current in all cases contains the exponential decaying factor (damping factor) assuring that the final value is zero
\checkmark In other words, assuring that the complementary function decays in a relatively short time.

Example

Example
A series RLC circuit with $R=\mathbf{3 0 0 0}$ ohms, $\mathrm{L}=10 \mathrm{~h}$ and $\mathrm{C}=\mathbf{2 0 0} \boldsymbol{\mu} \mathrm{f}$ has a constant voltage $\mathrm{V}=$ 50 volts applied at $t=0$. Find the current transient and the maximum value of the current if the capacitor has no initial charge.

Example

$$
\therefore \quad i=0.0168 e^{1.67 t}-0.0168 e^{-298 t}
$$

to Find M2X current is at $\frac{d i}{d t}=0$ (ie2N reid) or $(0.0168)(-1.67) e^{-1.67 t}-(0.0168)(-298.3) e^{-298 t}=0$

$$
\longrightarrow t=0.0175 \mathrm{sec}
$$

$$
\begin{aligned}
& \therefore 0=c_{1}+c_{2} \rightarrow(3) \\
& \text { and at } i=0 \rightarrow 50=10 \text { dildt or di/dt }=5
\end{aligned}
$$

$$
\begin{aligned}
& 5=(-1.67) c_{1} e^{-1.67 . t}-(298.3) c_{2} e^{-298.3 t} \\
& \left.5=-1.67 . c_{1}-298.3 C_{2}\right) \rightarrow(6
\end{aligned}
$$

Transient Analysis using Laplace Transform

$>$ Laplace transform is considered one of the most important tools in Electrical Engineering
$>$ It can be used for:
\checkmark Solving differential equations
\checkmark Circuit analysis (Transient and general circuit analysis)
\checkmark Digital Signal processing in Communications and
\checkmark Digital Control

Circuit Elements in the " S " Domain

Circuit Elements in the "S" Domain

Circuit Element Modeling

The method used so far follows the steps:

1. Write the differential equation model
2. Use Laplace transform to convert the model to an algebraic form

1.0 Resistance

Resistor

Circuit Elements in the " S " Domain

2.0 Inductor

$v(t)=L \frac{d i}{d t}(t)$

$V(s)=L s I(s)-L i(0)$

$\Rightarrow \quad I(s)=\frac{V(s)}{L s}+\frac{i(0)}{s}$

Circuit Elements in the " S " Domain

3.0 Capacitor

$v_{c}(t)=\frac{1}{C} \int_{0}^{t} j(t) d t+v_{c}(0)$

$$
V(s)=\frac{1}{C s} I(s)+\frac{v(0)}{s} \quad I(s)=C s V(s)-C v(0)
$$

First-Order RC Transient (Step-Response)

- Assume the switch S is closed at $t=0$
- Apply KVL to the series RC circuit shown:

$$
\left[\frac{1}{c} \int i(t) \cdot d t+v_{c}(0)\right]+R \cdot i(t)=V
$$

> Apply Laplace Transform on both sides

$$
\left[\frac{I(s)}{c s}+\frac{v_{c}(0)}{s}\right]+R \cdot I(s)=\frac{V}{s}
$$

$$
\mathrm{V}_{c}(0)=0 \gg \text { initial value of the voltage at } t=0
$$

$$
I(s) \cdot\left[R+\frac{1}{c s}\right]=\frac{V}{s}
$$

$$
I(s)=\frac{V / s}{[R+1 / c s]}=\frac{V / R}{[s+1 / c R]}
$$

> Apply the inverse Laplace Transform technique to get the expression of the current $\mathrm{i}(\mathrm{t})$

$$
i(t)=\frac{V}{R} e^{-\frac{1}{R C} t} ; t>0
$$

First-Order RL Transient (Step-Response)

> The switch " S " is closed at $\mathrm{t}=0$ to allow the step voltage to excite the circuit
$>$ Apply KVL to the circuit in figure:

$$
R i+L \frac{d i}{d t}=V
$$

Apply Laplace Transform on both sides

$$
\begin{gathered}
R \cdot I(s)+L[s \cdot I(s)-i(0)]=\frac{V}{s} \\
i(0)=0>\text { initial value of the current at } \mathrm{t}=0 \\
I(s) \cdot[R+s L]=\frac{V}{s} \\
I(s)=\frac{V}{s[R+s L]}=\frac{V / L}{s[s+R / L]}
\end{gathered}
$$

> Apply the inverse Laplace Transform technique to get the expression of the current $\mathrm{i}(\mathrm{t})$

First-Order RL Transient (Step-Response)

> Use the partial fraction technique

$$
I(s)=\frac{V / L}{s[s+R / L]}=\frac{A_{1}}{s}+\frac{A_{2}}{s+R / L}
$$

$>$ Multiply both sides by $s .(s+R / L)$

$$
\begin{aligned}
& V / L=A_{1} \cdot(s+R / L)+A_{2} \cdot s \\
& \cdots \cdots=\left(A_{1}+A_{2}\right) \cdot s+A_{1} \cdot \frac{R}{L} \\
& A_{1}=V / R \quad A_{2}=-V / R
\end{aligned}
$$

$>$ So, the current in s-domain is given by:

- Apply the inverse Laplace transform :

$$
\begin{aligned}
& A_{1}=\left.\{s * I(s)\}\right|_{s=0}=\frac{V}{R} \\
& A_{2}=\left.\{(s+R / L) * I(s)\}\right|_{s=-R / L}=-\frac{V}{R}
\end{aligned}
$$

both sides Compare the coefficients

$$
\begin{aligned}
I(s) & =\frac{V}{R}\left(\frac{1}{s}-\frac{1}{s+R / L}\right) \\
i(t) & =\frac{V}{R}\left(1-e^{-\frac{R}{L} t}\right) ; t>0
\end{aligned}
$$

